
SoundEditor
This programming example illustrates how easy it is to use the three SoundKit 
classes Ð Sound, SoundView, and SoundMeter.    Multiple sounds can be open at 
the same time, with full cut, copy and paste functionality, using the mouse to 
select portions of the sound waveform.        A control panel, consisting of a 
SoundMeter and Play, Stop, Pause, and Record Buttons, operates on whichever 
sound is in the current key window.    

The    SoundDocument class manages a single window containing a 
ScrollingSound, which is simply a subclass of ScrollView that contains a 
SoundView.      The ScrollingSound is contained in SoundDocument.nib, which is 
loaded for each new window.    As with most of the NeXT programming examples, 
it's as instructive to explore the .nib files as to read the source code.    Note that 
this .nib file's owner is of class SoundDocument.        

The SoundController class manages communication between the 
SoundDocuments and the rest of the interface (the menus and the control panel).   



Every time the user requests a new window with the New or Open... commands, 
the SoundController creates a new instance of SoundDocument.      SoundDocument
in its init method then loads in a new SoundDocument.nib, which displays the 
window with the ScrollingSound.    To create the SoundMeter in the control panel, 
we created a custom view, dragged the icon of /usr/include/soundkit/SoundMeter.h 
from Workspace    into IB's Classes suitcase, and used the Inspector to change the 
view's class.

You can use this simple example as a basis for many useful extensions Ð for 
example, zooming, mixing, filtering, changing sound format, etc.      If you're 
interested in a more full-function editor,    there is at least one commercial product 
(SoundWorksÔ from Metaresearch), as well as some public-domain editors 
available with source code on the Internet archive servers.

Changes for Release 3.0

Features have been added to illustrate use of the new Audio Transform 
Compression (ATC) format, various new supported format conversions, and 



miscellaneous new API in the Sound Kit. 

A SaveTo panel has been added which supports 

(1) changing the data format on save to linear, mu-law, or ATC 
compressed, 

(2) converting    mono to stereo, or stereo to mono, and 
(3) converting sampling rates among the three commonly used on NeXT 

computers.      

Many other format and sampling-rate conversions are now supported by the Sound
object's upgraded convertToFormat:... method (see the Sound release notes and 
on-line documentation for details);    the cases illustrated here are only the most 
generally useful.    Compression and decompression are carried out using the DSP, 
so they operate faster than real time for all standard sampling rates.    Sampling-
rate conversion does not use the DSP, so it is typically slower than real time.

In the SoundDocument class, if the soundfile format cannot be displayed by 



SoundView, (e.g. because it is compressed),    the format is converted to LINEAR_16
on input.    This is detected by the SoundView object returning nil in response to its 
setSound: method when the sound is not displayable.    (Empty sounds are 
defined as displayable in this context.    To be undisplayable, the sound must 
contain data in a format not supported by SoundView.) 

The new SoundView method isPlayable is illustrated.    When the play button is 
pressed, the current sound is send the isPlayable message.    If the method returns 
nil, the system beep is played instead of attempting to play the sound.


